Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Identification of a Turnover in the Initial Mass Function of a Young Stellar Cluster Down to 0.5 M JAbstract A successful theory of star formation should predict the number of objects as a function of their mass produced through star-forming events. Previous studies in star-forming regions and the solar neighborhood have identified a mass function increasing from the hydrogen-burning limit down to about 10MJ. Theory predicts a limit to the fragmentation process, providing a natural turnover in the mass function down to the opacity limit of turbulent fragmentation, thought to be near 1–10MJ. Programs to date have not been sensitive enough to probe the hypothesized opacity limit of fragmentation. We present the first identification of a turnover in the initial mass function below 12MJwithin NGC 2024, a young star-forming region. With JWST/NIRCam deep exposures across 0.7–5μm, we identified several free-floating objects down to roughly 3MJwith sensitivity to 0.5MJ. We present evidence for a double power-law model increasing from about 60MJto roughly 12MJ, consistent with previous studies, followed by a decrease down to 0.5MJ. Our results support the predictions of star and brown dwarf formation theory, identifying the theoretical turnover in the mass function and suggesting the fundamental limit of turbulent fragmentation to be near 3MJ.more » « lessFree, publicly-accessible full text available March 10, 2026
- 
            Abstract Evidence abounds that young stellar objects undergo luminous bursts of intense accretion that are short compared to the time it takes to form a star. It remains unclear how much these events contribute to the main-sequence masses of the stars. We demonstrate the power of time-series far-infrared (far-IR) photometry to answer this question compared to similar observations at shorter and longer wavelengths. We start with model spectral energy distributions that have been fit to 86 Class 0 protostars in the Orion molecular clouds. The protostars sample a broad range of envelope densities, cavity geometries, and viewing angles. We then increase the luminosity of each model by factors of 10, 50, and 100 and assess how these luminosity increases manifest in the form of flux increases over wavelength ranges of interest. We find that the fractional change in the far-IR luminosity during a burst more closely traces the change in the accretion rate than photometric diagnostics at mid-infrared and submillimeter wavelengths. We also show that observations at far-IR and longer wavelengths reliably track accretion changes without confusion from large, variable circumstellar and interstellar extinction that plague studies at shorter wavelengths. We close by discussing the ability of a proposed far-IR surveyor for the 2030s to enable improvements in our understanding of the role of accretion bursts in mass assembly.more » « less
- 
            Observations at (sub-)millimeter wavelengths offer a complementary perspective on our Sun and other stars, offering significant insights into both the thermal and magnetic composition of their chromospheres. Despite the fundamental progress in (sub-)millimeter observations of the Sun, some important aspects require diagnostic capabilities that are not offered by existing observatories. In particular, simultaneously observations of the radiation continuum across an extended frequency range would facilitate the mapping of different layers and thus ultimately the 3D structure of the solar atmosphere. Mapping large regions on the Sun or even the whole solar disk at a very high temporal cadence would be crucial for systematically detecting and following the temporal evolution of flares, while synoptic observations, i.e., daily maps, over periods of years would provide an unprecedented view of the solar activity cycle in this wavelength regime. As our Sun is a fundamental reference for studying the atmospheres of active main sequence stars, observing the Sun and other stars with the same instrument would unlock the enormous diagnostic potential for understanding stellar activity and its impact on exoplanets. The Atacama Large Aperture Submillimeter Telescope (AtLAST), a single-dish telescope with 50m aperture proposed to be built in the Atacama desert in Chile, would be able to provide these observational capabilities. Equipped with a large number of detector elements for probing the radiation continuum across a wide frequency range, AtLAST would address a wide range of scientific topics including the thermal structure and heating of the solar chromosphere, flares and prominences, and the solar activity cycle. In this white paper, the key science cases and their technical requirements for AtLAST are discussed.more » « less
- 
            Abstract Observed changes in protostellar brightness can be complicated to interpret. In our James Clerk Maxwell Telescope (JCMT) Transient Monitoring Survey, we discovered that a young binary protostar, HOPS 373, is undergoing a modest 30% brightness increase at 850 μ m, caused by a factor of 1.8–3.3 enhancement in the accretion rate. The initial burst occurred over a few months, with a sharp rise and then a shallower decay. A second rise occurred soon after the decay, and the source is still bright one year later. The mid-IR emission, the small-scale CO outflow mapped with ALMA, and the location of variable maser emission indicate that the variability is associated with the SW component. The near-IR and NEOWISE W1 and W2 emission is located along the blueshifted CO outflow, spatially offset by ∼3 to 4″ from the SW component. The K -band emission imaged by UKIRT shows a compact H 2 emission source at the edge of the outflow, with a tail tracing the outflow back to the source. The W1 emission, likely dominated by scattered light, brightens by 0.7 mag, consistent with expectations based on the submillimeter light curve. The signal of continuum variability in K band and W2 is masked by stable H 2 emission, as seen in our Gemini/GNIRS spectrum, and perhaps by CO emission. These differences in emission sources complicate IR searches for variability of the youngest protostars.more » « less
- 
            Abstract One of the most poorly understood aspects of low-mass star formation is how multiple-star systems are formed. Here we present the results of Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 observations toward a forming quadruple protostellar system, G206.93-16.61E2, in the Orion B molecular cloud. ALMA 1.3 mm continuum emission reveals four compact objects, of which two are Class I young stellar objects and the other two are likely in prestellar phase. The 1.3 mm continuum emission also shows three asymmetric ribbon-like structures that are connected to the four objects, with lengths ranging from ∼500 to ∼2200 au. By comparing our data with magnetohydrodynamic simulations, we suggest that these ribbons trace accretion flows and also function as gas bridges connecting the member protostars. Additionally, ALMA CO J = 2−1 line emission reveals a complicated molecular outflow associated with G206.93-16.61E2, with arc-like structures suggestive of an outflow cavity viewed pole-on.more » « less
- 
            Abstract We observed HD 19467 B with JWST’s NIRCam in six filters spanning 2.5–4.6μm with the long-wavelength bar coronagraph. The brown dwarf HD 19467 B was initially identified through a long-period trend in the radial velocity of the G3V star HD 19467. HD 19467 B was subsequently detected via coronagraphic imaging and spectroscopy, and characterized as a late-T type brown dwarf with an approximate temperature ∼1000 K. We observed HD 19467 B as a part of the NIRCam GTO science program, demonstrating the first use of the NIRCam Long Wavelength Bar coronagraphic mask. The object was detected in all six filters (contrast levels of 2 × 10−4to 2 × 10−5) at a separation of 1.″6 using angular differential imaging and synthetic reference differential imaging. Due to a guide star failure during the acquisition of a preselected reference star, no reference star data were available for post-processing. However, reference differential imaging was successfully applied using synthetic point-spread functions developed from contemporaneous maps of the telescope’s optical configuration. Additional radial velocity data (from Keck/HIRES) are used to constrain the orbit of HD 19467 B. Photometric data from TESS are used to constrain the properties of the host star, particularly its age. NIRCam photometry, spectra, and photometry from the literature, and improved stellar parameters are used in conjunction with recent spectral and evolutionary substellar models to derive the physical properties of HD 19467 B. Using an age of 9.4 ± 0.9 Gyr inferred from spectroscopy, Gaia astrometry, and TESS asteroseismology, we obtain a model-derived mass of 62 ± 1MJ, which is consistent within 2σwith the dynamically derived mass of MJ.more » « less
- 
            Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
